39 research outputs found

    Adversarial attacks hidden in plain sight

    Full text link
    Convolutional neural networks have been used to achieve a string of successes during recent years, but their lack of interpretability remains a serious issue. Adversarial examples are designed to deliberately fool neural networks into making any desired incorrect classification, potentially with very high certainty. Several defensive approaches increase robustness against adversarial attacks, demanding attacks of greater magnitude, which lead to visible artifacts. By considering human visual perception, we compose a technique that allows to hide such adversarial attacks in regions of high complexity, such that they are imperceptible even to an astute observer. We carry out a user study on classifying adversarially modified images to validate the perceptual quality of our approach and find significant evidence for its concealment with regards to human visual perception

    Provably scale-covariant networks from oriented quasi quadrature measures in cascade

    Full text link
    This article presents a continuous model for hierarchical networks based on a combination of mathematically derived models of receptive fields and biologically inspired computations. Based on a functional model of complex cells in terms of an oriented quasi quadrature combination of first- and second-order directional Gaussian derivatives, we couple such primitive computations in cascade over combinatorial expansions over image orientations. Scale-space properties of the computational primitives are analysed and it is shown that the resulting representation allows for provable scale and rotation covariance. A prototype application to texture analysis is developed and it is demonstrated that a simplified mean-reduced representation of the resulting QuasiQuadNet leads to promising experimental results on three texture datasets.Comment: 12 pages, 3 figures, 1 tabl

    A Text Mining Pipeline Using Active and Deep Learning Aimed at Curating Information in Computational Neuroscience

    Get PDF
    The curation of neuroscience entities is crucial to ongoing efforts in neuroinformatics and computational neuroscience, such as those being deployed in the context of continuing large-scale brain modelling projects. However, manually sifting through thousands of articles for new information about modelled entities is a painstaking and low-reward task. Text mining can be used to help a curator extract relevant information from this literature in a systematic way. We propose the application of text mining methods for the neuroscience literature. Specifically, two computational neuroscientists annotated a corpus of entities pertinent to neuroscience using active learning techniques to enable swift, targeted annotation. We then trained machine learning models to recognise the entities that have been identified. The entities covered are Neuron Types, Brain Regions, Experimental Values, Units, Ion Currents, Channels, and Conductances and Model organisms. We tested a traditional rule-based approach, a conditional random field and a model using deep learning named entity recognition, finding that the deep learning model was superior. Our final results show that we can detect a range of named entities of interest to the neuroscientist with a macro average precision, recall and F1 score of 0.866, 0.817 and 0.837 respectively. The contributions of this work are as follows: 1) We provide a set of Named Entity Recognition (NER) tools that are capable of detecting neuroscience entities with performance above or similar to prior work. 2) We propose a methodology for training NER tools for neuroscience that requires very little training data to get strong performance. This can be adapted for any sub-domain within neuroscience. 3) We provide a small corpus with annotations for multiple entity types, as well as annotation guidelines to help others reproduce our experiments

    A network linking scene perception and spatial memory systems in posterior cerebral cortex

    Get PDF
    The neural systems supporting scene-perception and spatial-memory systems of the human brain are well-described. But how do these neural systems interact? Here, using fine-grained individual-subject fMRI, we report three cortical areas of the human brain, each lying immediately anterior to a region of the scene perception network in posterior cerebral cortex, that selectively activate when recalling familiar real-world locations. Despite their close proximity to the scene-perception areas, network analyses show that these regions constitute a distinct functional network that interfaces with spatial memory systems during naturalistic scene understanding. These “place-memory areas” offer a new framework for understanding how the brain implements memory-guided visual behaviors, including navigation

    Conceptual and technical advances define a key moment for theoretical neuroscience

    No full text
    Theoretical approaches have long shaped neuroscience, but current needs for theory are elevated and prospects for advancement are bright. Advances in measuring and manipulating neurons demand new models and analyses to guide interpretation. Advances in theoretical neuroscience offer new insights into how signals evolve across areas and new approaches for connecting population activity with behavior. These advances point to a global understanding of brain function based on a hybrid of diverse approaches
    corecore